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On the Distribution of Pseudo-Random Numbers 
Generated by the Linear Congruential Method. III 

By Harald Niederreiter * 

Abstract. The discrepancy of a sequence of pseudo-random numbers generated by 
the linear congruential method, both homogeneous and inhomogeneous, is estimated 

for parts of the period that are somewhat larger than the square root of the modulus. 

The analogous problem for an arbitrary linear congruential generator modulo a prime is 

also considered, the result being particularly interesting for maximal period sequences. 

It is shown that the discrepancy estimates in this paper are best possible apart from 

logarithmic factors. 

1. Introduction. Let m > 2 and r be integers, let yo be an integer in the least 
residue system modulo m, and let X be an integer relatively prime to m. We generate 
a sequence yo, y1, . . . of integers in the least residue system modulo m by the recur- 
sion yn+ 1- Xy, + r (mod m) for n = 0, 1 .... The sequence xo, xl, ..., defined 
by xn = yn/m for n = 0, 1, . . . , is then a frequently employed sequence of pseudo- 
random numbers in the unit interval [0, 1] and is said to be generated by the linear 
congruential method. In the discussion of this method, one usually distinguishes two 
cases: the homogeneous case r 0 (mod m) and the inhomogeneous case r t 0 
(mod m). In both cases, the sequence yO, Y1, ... is eventually periodic. From the 
observation that the predecessor of each yn is uniquely determined because of the 
relative primality of X and m, it follows that the sequence yo, y1, . . . is, in fact, purely 
periodic. We denote the length of the period by r. Then the sequence xo, xl, .... is 
purely periodic with period r. 

In the first paper [7] of this series, the author has studied the distribution in 
[0, 1] of the full period xo, xl, . . ., Xr_1 in the homogeneous case, under the as- 
sumption that X is a primitive root modulo m and yo is relatively prime to m (see [6] 
for a slight improvement of the result). It turns out that the empirical distribution of 
the points of the full period provides an extremely good approximation to the uniform 
distribution in [0, 1]. However, in many practical situations one will only use an initial 
segment of the full period, simply because the period r is too large in most of the in- 
teresting cases. Therefore, in the second part [8] of this series, the distribution of the 
points xo, x 1. . . . , XN - 1 with 1 < N S r in the interval [0, 1] was considered. The 
requirement that X be a primitive root modulo m was abandoned, but the discussion 
was still confined to the homogeneous case. Satisfactory results were obtained for values 
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of N somewhat larger than the square root of the modulus m. One of the objectives 
of the present paper is the extension of these results to the inhomogeneous case. 

For sufficiently large N, one will expect the empirical distribution of the points 

xO, x1, . . ., XN-1 to be close to the uniform distribution in [0, 1], at least for well- 
chosen random number generators. The deviation between the two distribution func- 
tions is measured by the so-called discrepancy. For real numbers oil and %2 with 0 < 

a1 <?a2 < 1,letA(a1l , 2;N)be the number of n, 0 n 6N-1, withxn E [ar, 
a2). Then we define the discrepancy DN of the points xo, x1, . . .X, XNl by 

DN =DN(XO' XN- 1) = sup IA(al, ?a2; IN - (2-a )I. 
O a<a <k ~1 

For the general theory of discrepancy, see the book of L. Kuipers and the author [4, 
Chapter 2]. 

We shall estimate the discrepancy of xo, xl, . . . XN- 1 for 1 6 N 6 r, in both 
the homogeneous and the inhomogeneous case. We concentrate on the important class- 
es of moduli, namely, primes and prime powers. For results on general moduli in the 
homogeneous case, see [8, Section 5]. It should be clear how to use the methods of 
the present paper in order to obtain slight improvements of these results as well as 
extensions to the inhomogeneous case. The main tools of our investigation are an 
inequality of the author and W. Philipp [12] and estimates of character sums involving 
linear recurring sequences that were established in [10] . Incidentally, these estimates 
are also of importance in the study of the cycle structure of linear recurring sequences 
in filnite fields (see [11]). The possibility of obtaining the results of the present paper 
by means of the estimates in [10] was already announced in [9]. 

A brief survey of the contents of the paper follows. In Section 2, we take up 
the homogeneous case. This has already been dealt with in [8] , but we shall show 
how to refine the methods of that paper in order to get various improvements. How- 
ever, the resulting estimates are again only of interest when N is at least of the order 
of magnitude ml/+' for some c > 0. In Section 3, the inhomogeneous case is treated 
on the basis of the estimates in [10]. Essentially, the remark concerning the order of 
magnitude of N is also valid in this case, although the situation is a bit more compli- 
cated because of the appearance of one more parameter. Since they can be treated by 
similar methods, we study pseudo-random numbers generated by higher-order linear 
recurrences in Section 4. The most interesting pseudo-random numbers of this type 
are based on maximal period sequences in finite fields, and their use was suggested by 
R. C. Tausworthe [13] and D. E. Knuth [3, p. 27], among others. In the last section, 
we show that the estimates of this paper are best possible apart from logarithmic fac- 
tors. 

It should be pointed out that the subsequent discrepancy estimates imply error 
estimates for quasi-Monte Carlo integrations using the points xo, x1, . . . -, XN 

1 as 
nodes (compare with [8, Section 6] ). We remark also that the methods of this paper 
can be used to obtain results concerning the serial test for pseudo-random numbers gen- 
erated by the linear congruential method. The author intends to treat this subject on 
another occasion. 



DISTRIBUTION OF PSEUDO-RANDOM NUMBERS 573 

2. The Homogeneous Case. We consider the sequence yo, Y1, ... of integers 
described in the introduction, generated by the recursion Yn + 1 XYn (mod m) for 
n = 0, 1, .... It is customary to assume in the homogeneous case that yo be relatively 
prime to m, and we shall do so in the sequel. Then the period r of the sequence yo, 
y1, ... is equal to the exponent to which X belongs modulo m. The corresponding 
sequence xo, xl, . . . of pseudo-random numbers in the unit interval [0, 1] may also 

be described explicitly by xn = {Xnyo/m} for n = 0, 1, . . . , where {t} denotes the 

fractional part of the real number t. The discrepancy of xo, x . . ., XN- 1 with 1 < 
N 6 r was already estimated in [8]. We shall present various improvements in this 
section. 

We first discuss the case that m is a prime. Some auxiliary results on trigono- 
metric sums are needed. They ameliorate corresponding lemmas in [8]. Throughout 

this paper, we write e(t) = e27rit for real t. 
LEMMA 1. Let m be a prime, let b and X be integers not divisible by m, and 

suppose X belongs to the exponent r modulo m. Then, 

T-i 

(1) Z e(bX1/m)e(cn/r) < (m - r)112 
n=O 

for every integer c divisible by r, and 

,r- 1 

(2) E e(bX1/m)e(cn/r) 6m 12 
n=O 

for every integer c not divisible by r. 
Proof. For integers a and c, write 

r- 1 

c(a, c) = E e(aX1/m)e(cn/r). 
n=O 

The general term of this sum, considered as a function of n, is periodic with period r. 
Therefore, for any integer y, we have 

'r-1 

c(a, c)= E e(aXn+ Y/m)e(c(n + y)/r); 
n=O 

and so, 

r- 1 

(3) Iu(a, c)I = E e(aXyXn/m)e(cn/r) = Ia(aXy, c)I. 
n=O 

Since the integers bX, bX2 bXT are pairwise incongruent modulo m and not di- 

visible by m, it follows from (3) that 
r mr-i mr-1 

rlu(b, c)12 = I Ia(b Xy, c)12 < E I(a, c)12 = , I(a, c)12 - 1I(O, C)12 
y=1 a=1 a=O 

r- 1 nm-1 
= , e(c(h - j)/r) E e(a('h - Xj)/m) - 1I(O, C)12 

h,j=O a=O 

= mr - 1(O, C)12. 
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The inequalities (1) and (2) are immediate consequences. 
LEMMA 2. For any positive integers A and B, we have 

A-i B-i 2 2 
(4) E E e(cy/A) < -A log A + -A. 

c=1 y0O7 5 

Proof. The lemma is trivial for A = 1. For A > 2, we have 

| Be( ' - le(cB/A) - II sin iTIIcB/AII 
ey0 IecA i snrlcAI for 1 

< c <A - 1, 

where II tll denotes the absolute distance from the real number t to the nearest integer. 
If S stands for the expression on the left-hand side of (4), then 

A - 1 sin iIc/A 7 (sin CIIIc/AIIfA 

c= 1 sn7 cA1 c=1 

[A/21 
< 2 E (sin(lrc/A))-i 

c=1 

Now, by the usual method of comparing sums with integrals, we obtain 

[A/2 1 [A/21 

Z (sin(irc/A))- = (sin(iT/A)) + E (sin(rc/A)) 
c=1 c=2 

(sin(iT/A))- 1 + f [A/21 dx 
sin(iTx/A) 

? (sin(iT/A))- + A f 7r/2 dt 
IT I/A sin t 

(sin(7T/A)) + Alog cot 7r < (sin(iT/A))- + Alog 2A 
7r 2A 7t ir 

Now, for A > 6 we have (XT/A)- sin(iT/A) > (XT/6)- sin(iT/6), hence sin(iT/A) > 3/A. 
This implies 

[A/21 <A 
E (sin(rc/A))-I - log A + log 7T A for A > 6; 

and so, 

[A/21] A 1 
(5) E1 < - logA + - A forA > 6. , (sinerTc/A))- 7r 

c=i 

The inequality (5) is easily checked for A = 3, 4, and 5, so that (4) holds for A > 3. 
For A = 2, the inequality (4) is shown by inspection. 
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LEMMA 3. Suppose the conditions of Lemma 1 are satisfied. Then, 

N-1i + 
E e(bXn/m) ' MlI(-log T + 5 (m-T)'/2 for 1 N6-. 

Proof. We note that 
N-1 1 r /N-1 \ /T-1 

, e(bAn/m)=_ , ef-y/)l E e(b Inm)e(cnlr) 
n=O c- Y= / \ n= / 

for 1 < N < r. Thus, by Lemmas 1 and 2, 

N-1 1 i N-1 1-i 

, e(bX'</m) 6 - e(-cy/r) E e(bXI/m)e(cn/r) 
n=O ~ Tc=1 y0On= 

1 i0 c -1 N-1 n- m 
< 1 1/2 E |Ee(-cy/) + - - T) 

c=1 yO T 

< m1/2 (2 log + 2) + N(m _ r)1- 2 

THEOREM 1. Let m be a prime. Then, for 1 S N < r, the discrepancy DN of 
the points xol,x . XN- 1 satisfies the inequality 

(6) DN < X log(l + 4/X) + X, 

where 

X= 4mj/2 ( logr + ) + 4(m - r)1/2 

Proof. For r = 1 or 2, one sees easily that X > 1, so that (6) is trivial in this 
case. Thus r > 3 from now on. This implies, in particular, that m > 5. We use an 
inequality of the author and W. Philipp [12, Corollary of Theorem 1']: for any points 

tO . tNi l in [0, 1) with discrepancy D(to. * * * tN_l) we have 

(7) DN(to . tNY ?L?lr E(b--L) E e(btn) 

for all positive integers L. For the given points xo, xl, . XN- 1, we choose L= 
[4/X] + 1. We note that 

o ta - logt + 2 + ( log 3 +- + > tT > 

so that 
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This is equivalent to L < m. From (7) we get 

DN S L + lbjb T (b-L) |O- Ee(byoXn/m) 

For 1 < b < L - 1, we have g.c.d.(byo, m) = 1, so that we may use Lemma 3. For 
b = L, the coefficient of the trigonometric sum is zero, so that formally we may also 
use the upper bound in Lemma 3. We obtain 

4 4(1/2(2, 2\N \L I \ 
DN < L- rN \/ log 7T +5 + 

-I(m 
- r)1/2 , -L 

< ?+XlogL <X+Xlog(I +4)' 

and the proof of the theorem is complete. 
In the case of m being a prime, there is an alternative way of estimating DN that 

may sometimes yield an even better estimate than (6). This approach is based on the 
following general lemma that may be thought of as a crude version of the inequality 

(7). 
LEMMA 4. Let m > 2 be an integer, and let zo, z1,. . . , - be integers in 

the least residue system modulo m. Suppose that j,N=0 ne(hzn/m)I 6 Y for h = 1 2, 

. . . , m - 1. Then the discrepancy of the points zo/m, z1 /m, . .. , ZN 1/M satisfies 

(8) z0 z- . 
(8) ~~DN( m'.'. ) < m N(-log m + 5 ) 

Proof. For O? < 1 < a2 < 1, let A(al, a2; N) be the number of n, O < n < 
N-1, with znlm e [la1 I 2). For j = O, 1, . . ., m-1, let A; N) be the number 
of n, O Sn SN-1, withzn =j. Then, if u, v are integers with O Su < v < m, 
we can write 

u v v- l v-i1N-1 

A (m ' mN = E AUJ; IV)= E FZ) 
f-- fju n=0 

where c; is the characteristic function of the singleton {j}. Now 

c() 1 rn-i c =(z) Z e(h(z - j)/m) for z = O, 1, .. .,m- 1, 
h=0 

so that 

i \ v-i N-i1 rn-i 

A(ju u ;N) = E E E e(h(zn -NM)/r) m' m ju n=0 h= 

1m-1/v-I \ N-1\ 

m h e( hj/lm) (, e(hzI/f)) 

and 
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A (m-s m-; N) N (Vm u)=-S 2 l( (h)e ) (; hjl e(hzn/m)) 

Using Lemma 2, we get 

u v N(v - m-~1 v-i 
iM 

- 

A( I _;N - 
f| < | e(-h/)| e(hZn/) h=1 j=u n=0 

(9) y m-1 v-1 yim-1 v-u-i 
* m- hE 

| 
e(- hj/m)| =m 2: | e hjlm)| m h=1 j=u m hi=1 1=0 

* y(2 log m + 
2 

Now let J = [a 1 a 2) be an arbitrary subinterval of [0, 1). Then there exist subinter- 

vals J = [f30), f30l)) andJ2 = [,(2), 4(2)) of [0, 1) such that ? C J C J2 the end- 

points of J1 and J2 are rationals with denominator m, and kv(Ji) - v(J)I S 2/m for 

i = 1, 2, where v denotes Lebesgue measure. Then, 

A(3(1) ,01); N) -Ni)(J1) + N(v(Jl )- (J)) S A(cy, 2;N)-Nv(J) 

s Aq3(2), :(32); N- N(J2) + N(v(J2) - (; 

hence, 

A4(ca, a2; N) - N(2 - al)l max IA(q('), (4i); N) - Ni(J1)j 1 1 CY C12 i=~11,2 
2 

+ N max Iv)(J) - v(J)I < Y( log m + + m 
i=1,2 \lr 5~ m 

by (9). Now (8) follows immediately. 
THEOREM 2. Let m be a prime. Then, for 1 < N S r, the discrepancy DN of 

the points xo, x1, . . ., XN- 1 satisfies the inequality 

1__2 (M -)/ 22 
DN m1N (- log m +5) (- log r + 4) + _ y) 2log m + 2 + 2 

Proof. For h = 1, 2, . .., m-1, we have 

N-1 N-1 

Z e(hyn/m) = E e(hy0 Xn/m). 
n=0 n=0 

Since g.c.d.(hyo, m) = 1, Lemma 3 can be applied. The result follows then from 

Lemma 4 with 

y m1/2 (2 +2 ) N( T)112 log 'r + +) +_(m _ 

We consider now the case that m is a prime power, say m = pa with ot > 2 and 

p a prime. If X belongs to the exponent r modulo m and to the exponent -y modulo 

pa- 1, then d = r/y is an integer. 
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LEMMA 5. Let m = pa, p prime, at > 2. Let b and X be integers relatively prime 
to m. Suppose X belongs to the exponent r modulo m and to the exponent y modulo 
poa1 and set d = r/y. Then, 

(10) | e(bX1'm)e(cn/1r) < 
n=0 

for every integer c divisible by d, and 

(1 1) | E ~~~~~e(be1/m)e(cn1/r) | 6 m 1/2 
n=O 

for every integer c not divisible by d. 
Proof. For integers a and c, write 

T- 1 

a(a, c) = F e(aX)/m)e(cnIr). 
n=O 

By the same arguments as in the proof of Lemma 1, we obtain 

T mn-i 
(12) rju(b, c)12 = l Ia(bXy, c)12 < F*lU(a, c)12, 

y=1 a=O 

where the asterisk signalizes that we only sum over those a with g.c.d.(a, m) = 1. Fur- 
thermore, 

m-1i -1 m-i 
(13) 1*(a, c)12 = e(c(h - j)/r) 1 *e(a(h - Xi)/m). 

a=O h,j-O a=O 

Now, for an integer t, the sum 2*Vm-le(at/m) is a Ramanujan sum which, according 
to [2, p. 238], has the value 

,* e(atlm) - (mItOP(m) 

where t' = g.c.d.(t, m) and ,u is the Moebius function. It follows that in (13) we only 
get a contribution from those ordered pairs (h, j) for which Xh X i (mod pai), or, 
equivalently,h-j (mod y). In detail, we have 

rn-1 Cji2(p)pp(AW M) T 

, *laY(a, C) 2 (m L4) e(c(h - j)/r). 
a= \ + 9{9 h,j=0 

h * j,h-j (mod y) 

Now, 

e(c(h - j)lr) = E e(c(h - j)ir) - r 
h,j=O h, jO0 

h*j,h-j (mod y) h-j (mod y) 

I- y-ic1 =-i I (i+sd\I- _I e(c(h -j)/r) ~e(s(h -j)f,y)-r- e 
~ 

-T 
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If dlc, then there is a unique s, 0 S s y - 1, such that c + sd 0 (mod r); if d%c, 
we always have c + sd t 0 (mod r). Therefore, 

T- 1 e(c(h-i)/)=J(d- 1I) if dlc, 

h,j=0 Kr if dlc. 
h 0ij,h-j (mod y) 

It follows that 

rn-i A~pM)T-d I (m)r if dlc, 
E *1a(a, C)12 p - I 

a=0 MT if dlc. 

By combining this with (12), we arrive at the inequalities (10) and (11). 
Since X,y 1 (mod p-') implies ?'YP I (mod p'), the value of d in Lem- 

ma 5 can only be 1 or p. If d = 1, then we have (10) for all integers c, and the sum 
occurring in (14) below can be estimated as in Lemma 3. If d = p, one obtains the 
following result. 

LEMMA 6. Suppose the conditions of Lemma 5 hold with d = p. Then, 

(14) | e(be /m) < mr /2( 1) log T + 3 for 1 N T7. 

Proof. As in the proof of Lemma 3, we have 

NEe(b 
e /m) | 1E e(- cy/r)| e(be1/m)e(cn1T)| 

n=o c=1 y=o n=o 

It follows from Lemma 5 that 

N-1 m 1/2 -- N-1 

n=o c=1;Pfc y-0 

If r = p, then 
-1 N-1 p-1 N-1 2 2 

? ?e(cylT) = e(cy/p) < - plog p + 
c=l ;pfc y=O C=1 y=O f 

by Lemma 2. Together with (15), the inequality (14) follows easily. Thus, r > 2p 
from now on. As in the proof of Lemma 2, we get 

- N| e ) | - sin ir IcN/II 1( 

c-i,p/c y-O c i ~~~ sin ir tic/nt 11 (sin ir IIc/lIt c=1; pfc y=O c=1J; pJ{c c=1; pfc 

[ T/2J 
S 2 E (sin(7rc/r))-; 

cil ;p/c 

and so, 
r1) -i N-i [i-/2J [,r/2J 

(16) z | E e(cy/T) < 2 E (sin(7rc/r))f - 2 F (sinQrc/r)i 
c=i;p/c y=O c=i c=i;plc 
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Now, 

[T/21 [r/2pI 
E (sin(rc/r))- 1 = E (sin(ipc/r))- 1 (sin(rp [r/2p] /r))- 1 

c=1;plc C=1 

+ 
[,l2 I 

(sin(iTpc/,r))- (1/,2 I d 

(17) c+ z+ sin(irpx/r) 

+ 
rp rp[T/2pJ /T dt r rp[r/2p] _= _ . = 1 + log tan , 

lTP Jrp/r sin t irp 2,r 

+ -p log cot 2 . 

Since f(x) = x- cot x is increasing for 0 < x < 7T/4, we have 

x- 1 cot x < f(7r/4) = --1 for 0 < x < ? r/4; 7T 

and consequently, 

p 2,r 4 ~2,r 4 '2,r + 4\ 
(18) log cot 2P > log(-+ 1 -- > log-- _ I _ 

by the mean-value theorem. Furthermore, [r/2p] > r/2p - 1/2, and so, by the mean- 
value theorem again, 

log tan 2,r > log tan 
-4 4rT sin(ir/2 - rp/2T) 

(19) - _ 

T, /T 
\ 

1 
= 

irp~ 
= s-) > - cos4) 

By combining (17), (18), and (19), we obtain 
[T/21 T 1 2r 

1 1 (2,r A\4 

F IsinircIr)) > log- + 1 - - 1)- + 1 
c=1;plc I, 11 

and it is easily checked that this implies 

(20) [ (sin(rc/r)) > log-2 
c1l;pl IC' 

By an inequality in the proof of Lemma 2, we have 

[(r/21 < 
r 

Trfrr>6 
, (sin(irc/r)) 6-log r + for > 6. 

Then, using (16) and (20), 
r1 N-1 2,r 2 T 7 2,r 

| e(cy/) < -loglgr + log log- 

y 
_ p-1I 3 2 l 2 +-o 2TP) 

- 
p rog+ -- 2log-i+-2log- '1P 

7TP 3 ~in 2 irp 2/ 
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for r > 6. Since g(x) = x- 1 log x is decreasing for x > e, we have 

lo irp <lo f 
irp g2 S 

r 

and so, 

(21) | E e(cy/r) < p - log r + - T, 
c=i ;p/c y=O P 4 

at least for r > 6. In the only exceptional case, namely r = 4 and p = 2, one checks 
(21) directly on the basis of (16). The desired inequality (14) follows now from (15) 
and (21). 

We recall the definition of the number a introduced in [8, Section 4]. Let X be 
relatively prime to m with RII > 1, and let r(p) be the exponent to which X belongs 
modulo p. Then, if p is odd, a is the largest integer such that ppIQJ(P) - 1). If p = 2 
set 6 = 1 ifX 1 (mod 4) and 6 = 2 if X 3 (mod 4). Then a is the largest integer 
such that 201(X5 - 1). The significance of stems from the fact that hr(p + 1) = 

pr(ph) as soon as h > (, where r(ph) is the exponent to which X belongs modulo ph. 

THEOREM 3. Let m = p?, p prime, a > 2. Let X be relatively prime to m with 
RII > 1 and ot > (, where ( is defined above. Then, if 1 < N < r and 

(22) f3 <p3/2 - p1/2 mr3/2 (p - 1) log r 
p3/2 7~rN r4 

the discrepancy DN of the points xo, xl, . XN- 1 satisfies the inequality 

p3/2 Nl/2 4 p3/2 1) 1 p3/2 logp 

N 3/2 ~ ~ 3/2 -1'2 X p3/2- p/ 
where 

_4ml/2 t2(pD - 1) log X =- 1 log 3 + 

Proof. Because of (7), we have 

(23) DN L - + f( )|N -Ze(byoX /m) L 7Tb=1bL/ N n= 

for all positive integers L. We choose now 

[p3/2 - p12 xJ 

It follows then from (22) that L < p'?-. 

For 1 < b < L-1, we have g.c.d.(byo, m) = g.c.d.(b, m) = ps with 0 < s a -, 
-1. If s > O, then 

(24) x; 
e(byoen/m) e((b/p)yXe ) 

n=O n=O pa.( - s " 'p?)--S) n=0 p 
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Since s < a - - 1, we have rT(pS-) = pT(pI,-s-) by the remark preceding The- 
orem 3. Therefore, the last sum in (24) is equal to zero by (10), and so 

E e(byo0Ilm) = 0. 
n=O 

It follows then by the same argument as in [8, Lemma 31 and by Lemma 6 that 

| e(byoXe/m)l < p(S)/2 ( 2 ) log r(p&-s) + 

(Mps)112 7 lg 4 for < N <. 

The above inequality is also satisfied in the case s = 0, for then the requirements of 
Lemma 6 are met because of r = pr(p- 1). For b = L, the coefficient of the corre- 
sponding trigonometric sum in (23) is zero. Let R be the largest integer with pR < L. 
Then, 

DN 4 4m"/2 12iLLI )_log r + 3jRps1 L (L i 
L irN 

4 7T+ 4 
S=o b=1 b L 

(25) g.c.d.(b,m )=pS 

4 

+ X E: p- 
s1 

(b L) S0O b= d b L 
g.c.d.(b,m )pS 

To estimate the double sum in (25), we distinguish several cases depending on the value 
of R. If R = 0, then L < p, and so by [8, Eq. (9)] with s 0, 

R 
p-s12 

L 
(b- < log L < p log L + log p 

g.c.d .(b,m )=pS 

p 3'2 _-p1!2 log p < Pt-Pl/log L + 
p3/2 1P 

If R = 1, then p S,L < p2, and so from [8, Eq. (9)] with s = 0, 1, we get 

s=O b=1 (b L) 

g.c.d.(b,m )=pS 

<log L - I 
log([L] + + - / log[L] L+ L{L} 

1 L l/ LIA 1 L32 p1/ 

<logL- - log- + I H +{p- 
L + log L 

p p L + pJ P, _ 3/2 P 

jP-lo+i)logL I1+log p log p 
p p3 p ~~~~~p 3'2- 
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Since log p > 1/2 log L, the last expression is less than 

1 

P 
+ 

2I3i2)log 

L + 1 +logp 

It is straightforward to check that 

p-I 1 p3/2 _ p1/2 
+ 3K 

p 2p3/2 p3/2 - 

and so we obtain 

R L ~ (1)< 3/2-_P1/2 1 +log p 
s= __l (b < p3-2 log L + 

g.c.d.(b, m )=ps 

Finally, let R > 2. Then, from [8, Eq. (9)] we get 

? (~~j~?+log' I pO logpL + 
E= (b L <s 1 s - 1+ I L+1 L 

g.c.d.(b,m )=pS 

L[ps 1]for O < s < R, 

and 

L I 
log P+ 1 L 

g.c.d.(b,m )=pR 

It follows that 

R 
S/2 (I?1)?% 1P3s/2(log L~ -!lg 

s=0 b=1 b1 --) S= P 3 gsp lop+l 

(26) g.c.d.(b,m)=pS 

?p 3R/2 
logLp + 

I 
P (i-IL + [pS+j) + P R/2 } )L 

Now 

LR-1 R1/2 

=_sE p-3s/2c ( + [ ]+P-R/2) ( z s2 j + P`/2[ ] 

(27) urthPe e + PS2 ] ( 

_ p11 

s=0 p 3/2 - 

Furthermore, 
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R-1 3'~ L 1 __ 

E p (sog s - log s ) +p-13R/2 log p 
s0O P p P1 

R-1 1 ?1 
= , P 3S/2 S log L - s log p + - log p + p 3R/2 log p 

* 3/2 log L+ 
p P-3SI2 

( S log p + p 3R/2 log p 

p 3/2_ p 
12 lo p 3R2 (s 1 - o1p/2R/ 

P 3/2 P1 log L + sp p- 3/2 P log L-log p) 

However, since log L > 2 log p, the last expression in parentheses is easily shown to 
be positive. By combining this with (26) and (27), we obtain 

(28) / pS=l ( 1 )< P32 log L + - o + + 
__ b1 b p p 3'2 _ 

g.c.d.(b,m)=pS 

By comparing this with the results in the earlier cases R = 0 and R - 1, we see that 
(28) holds in all cases. Thus, together with (25), 

4 p 3'2 -p1'2 (log p p1'2 
DN < L + P3/2 lXlog L + ( + PX3/2 .X N L p31-1P p1-/ 

Using the special form of L, we obtain 

DN < - - Xlog 1 + 
4(p3/2 1/2 X 

2 p p3'2 pp 

which proves the theorem. 
A condition which implies (22), and which is easier to check, is the following 

one: 

(29) pP < (0.24)m1 /(2 (2+-1 log T 

That (29) is a sufficient condition for (22) is shown as in [8, Eq. (12)]. In practical 
cases, m and r are large, so that (29) can be satisfied by choosing a X with ,B < a/2. 

We note that on the basis of Lemma 2 one can also improve somewhat on the 
results in [8, Theorems 3 and 4]. 

3. The Inhomogeneous Case. We consider now the sequence yo Y1, ... of in- 
tegers described in Section 1, generated by the recursion Y + 1 Xy1 + r (mod m) 
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for n = 0, 1, . , where X is relatively prime to m and r + 0 (mod m); the last con- 
dition is, however, never used in the proofs. To rule out the trivial case that yo, y1, ... 
is a constant sequence, we assume Xyo + r t yo (mod m). We shall also require that 
X t 1 (mod m), in order to discard another uninteresting case. In some of the lemmas, 
these restrictions are not necessary. In the inhomogeneous case, the initial value yo 
need not be relatively prime to m. One shows easily by induction that 

(30) yn-Xy0? + X l r (mod m) for n = 0, 1, . 

Let r again be the period of the sequence yo0 yl, ... . We shall estimate the dis- 
crepancy DN of the pseudo-random numbers xo = yo/m, X1 = Y1/m, XN- 1 = 

YN-1/M for 1 <N<r. 
In the case that m is prime, the period r can be described in the same way as in 

the homogeneous case. Because of (30), we have Yn-YO (mod m) if and only if 
-n 1_ 
pil(( - 1)yo + r)--O (mod m), 

which, by virtue of X t 1 (mod m) and (X - l)yo + r I 0 (mod m), is equivalent to 
X7 1 (mod m). Therefore, r is equal to the exponent to which X belongs modulo m. 

LEMMA 7. Let m1 > 2 and r be integers, let b and X be relatively prime to ml, 
let X belong to the exponent ,i1 modulo m1, and let zo0 Z, . . . be a sequence of in- 
tegers with zn + 1 = Xzn + r (n = 0, 1, . ..) having period 7r1 modulo ml . Then, 

N-1 /m 11\11272 2 N 

E ne z nl1) |< ( logT + ?- J for 1 < N < 

Proof. Since X is relatively prime to ml, the sequence zo z1, . .. is purely peri- 

odic modulo m1 with period r1 . By [10, Theorem 1] (compare also with [10, The- 
orem 4]), we have 

(31) ! ~~~E e(bz lml)e(cnlT) 6 ( 
1 
I (31) I~ /n 1 __ 

for all integers c. Then, as in the proof of Lemma 3, 

jN-1 ? 1 N-1i r1 - 

IEe(bzn /m 1)ST < NSe(- cylTl Ee(bznlml)e(cnlrl)] 
n=O 1 ci y=0 n=O 

< p ) - E E e(cy/)| = I)1 1 E |E e(cy ) 

I I) N 
< ()1 2 (2 log T- + ? +?N 

where we have applied Lemma 2 in the last step. 
THEOREM 4. Let m be a prime, and let X t 1 (mod m), g.c.d.(X, m) = 1, and 

Xyo + r f yo (mod m). Then, for 1 < N < r. the discrepancy DN of the points x0, 
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X1 . . .9 XN- 1 satisfies the inequality DN < X log(l + 4/X) + X, where 

4ml/21' 2 
I -logr+ -+- 1. 7rN (7r 5 TI 

Proof. By (7), we have 

DN < 
4 4 L 

ED b L) 
i 
N-1 

e(by /m)| N L ir _: bLf N n n 

for all positive integers L. We choose now L = [4/X] + 1. We note that 

X m1/2 (2 l + 2) + m1/2 7ml/2 7m 12 1 
4 7TN IT 52 lrr 57rr 57r(m -1) m' 

and so L < m. We apply now Lemma 7 with ml = m and with the sequence zo, z ... 

determined by zo = yo. We have zn Yn (mod m) for n = 0, 1,.... and r1 = =, = - 
therefore, by using the estimate in Lemma 7 formally in case b = L = m, we get 

D S 4+ 
4m ( log 

2 
+ 

N 
+ I (I 

N L irN ir 5 rI 'b L' 

<X+XlogL SX+Xlog(l + 4/X), 

and the proof is complete. 
THEOREM 5. Suppose the conditions of Theorem 4 hold. Then, for 1 S N S -r, 

the discrepancy DN of the points x0, x1, .... XN- 1 satisfies the inequality 

D S 1m/2 (2 lo 2 + N) 21 log m + 2 + m. D <in log (2 +2 N (2 +2? 
N N\ir O g r5j7og 5 j. 

Proof. This is an immediate consequence of Lemmas 4 and 7, with the latter 
lemma applied in the same way as in the proof of Theorem 4. 

Now let m be a prime power, say m = pa with p prime and a > 2. There are 
various ways of characterizing the period r of yO, y1, . . . in this case. See [1], [3, 
Chapter 3], and [5]. For our purposes, the following characterization is convenient. 

LEMMA 8. Let m = p?X, p prime, a > 1, let X # 1 be relatively prime to m and 
let r be an integer. Let z0o z1, . . . be a sequence of integers with zn+1 = Xzn + r 
(n = 0, 1, .. .) such that (X - 1)zO + r # 0. Let p be the largest integer such that 

PP I(X - 1) and co the largest integer such that pW 1((X - 1)zO + r). We assume a - 

co + p > 0. Then zo Z, .z... is purely periodic modulo m, and its period modulo m 
is equal to the exponent to which X belongs modulo p +- +P. This holds trivially 
for a = 0 as well. 

Proof. Since X is relatively prime to m, the sequence z0, zl1 .. . is purely periodic 
modulo m. In analogy with (30), we have 

-n 1 
zn -zo A ((X*-)zo+r) forn=O,1,. . 

But the number on the right-hand side is divisible by m = pa, a > 1, if and only if 
Xn 1 (mod paw +P), and the assertion follows. 

The exceptional cases in Lemma 8 are trivial. If ax - co + p < 0, then co > a, 
and the period is 1. If (X - 1)z0 + r = 0, then the period is also 1, and if X = 1, then 
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the period is mlr', where r' = g.c.d.(r, m). Since the given sequence yo, y1, . . . is 
identical modulo m with a sequence z0, z1, . .. from Lemma 8, this result yields the 
desired information about the period r. The conditions of Lemma 8 will be satisfied 
if we assume X t 1 (mod m), g.c.d.(X, m) = 1, and Xyo + r tyO (mod m). The sub- 
sequent lemma generalizes (10) in the case d = p. 

LEMMA 9. Let ml = pa, p prime, a > 1, and letzo Z, . . . be a sequence of 

integers with Zn-t 1 = Xzn + r (n = 0, 1, . . .) which is purely periodic modulo m1 
with period r1 and purely periodic modulo m2 = Poa with period r2 = r1/p. Then, 

r1 
- 1 

E e(bznlml)e(cnlrl)= 0 
n=O 

for all integers b relatively prime to ml and all integers c divisible by p. 
Proof. We have 

m1 T1-1 2 

E E e(bznlml)e(cnlrl) 
b=lI n=O 

g.c.d.(b,m1 )=1 

m 1 1-1 2 mI IT-1 2 

= E | e(bz/lml)e(cnlrl) - E e(bz /ml)e(cn/rl) 
b=1 n=O b=1;plb n=O 

m 1 r1-i m2 1-1 2 

b=1 h ,j= e(b(zh - z.)/m 1 )e(c(h - j)/ul - e(bzn/m2)e((C/P)n/r2) 
b=l1 h, j=O Ib=l1 n=O 

T1-1 m m2 T2-1 2 

- , e(c(h - j)/rl) 1 e(b(zh - Zj)/ml)_ p2 j e(bzn/m2)e(cn/r-1) 
h,j=0 b=1 b=1 n=O 

T2-1 m2 

=mri - p2 , e(c(h - j)/r-) j e(b(zh - zI)/m2) 
h,j=0 b=1 

= t - p2m t2 = 0 

which proves the result. 
LEMMA 10. Suppose the conditions of Lemma 9 are satisfied, and that X is 

relatively prime to ml and belongs to the exponent Ml modulo ml. Then, for all 
integers b relatively prime to ml we have 

| e(bz /m) < (-) (2(P ) log r+ for 1 ?N r1. n=O n g 4 

Proof. As in the proof of Lemma 3, we have 

| e(bz /ml) <- | e(- cy17)|| e(bznlml)e(cnlrl)| 
1 n1 - 

n=O 1 c= t y=O n=O 

Because of Lemma 9, this reduces to 
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N-i 1 1 
N-i1i- 

|Ee(bz,,/m 1) | 
I 

e(cyll)| | E e(bz n ml )e(cn/T1l)| 
n=O 1 c= 1; y=O n=O 

By applying (31), we get 

N-i (mir\1i2 1 i- -i N-i 

|E e(bz n/ml)l < (1 1) E |E e(cy/l)rd 
n=O ~~~~~1 c=i;p/c y0O 

The sum on the right-hand side was estimated in the proof of Lemma 6, and this implies 
already the desired inequality. 

For X relatively prime to m and 1XI > 1, we defime the positive integer ,B in the 
same way as in the paragraph preceding Theorem 3, and we denote by ,u the exponent 
to which X belongs modulo m. We define the number p as in Lemma 8, and we let 
w be the largest integer such that p' 1((X -1)yO + r). We note that 0 < p < al and 
0 < w < a under the conditions of the subsequent theorem. 

THEOREM 6. Let m = p', p prime, a > 2, let X be relatively prime to m with 
1Xi > 1, X # 1 (mod m), and Xyo + r yo (mod m),and let Ol - w + p > 3. Then, 
if 1 ANA rand 

()3/2 - pi/2 m3/2T1/2 (2(p - 1) log r + 
(32) p13+('P <p3 - 1 lrN1i1 i3 

the discrepancy DN of the points xol,x, . . . , XN- 1 satisfies the inequality 

p3/2_ p/2 ( 4(p3/2 -1) 1 ( p3/2 log p\ pDN < l3/2iXlg /2 X + _+ X, 

where 

~4(mTr)1 /2(p 

- 1)lg' 
3 

7rN, 1/2 K lp o +4) 

Proof. Let zo0 Z, . .. be the sequence of integers determined by zo = YO and 

Zn+ 1 = Xzn + r for n =0, 1, . Then zn-- Yn (mod m) for n = 0, 1, ..., and 
from (7) we get 

(33) DN<L 7T b (bL)IN- n (z 

for all positive integers L. We choose now 

4Qp 3/2 - 1) i 
L = . 

* X + 1 . L p3/2 _iP. 11]+1 

It follows from (32) that L < p'-p- +P. 

The sequence Zo, Zi ... is purely periodic modulo m and, by Lemma 8, its 
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period t modulo m is equal to the exponent to which X belongs modulo p-( '+P. 

Since a - co + p > (3, it follows from Lemma 8 and the remark preceding Theorem 3 
that the conditions of Lemma 10 are satisfied for ml = m. Therefore, for 1 < N < t, 

(34) J|e(bzIm) /j) < (m)1/2(2 - ) log T + if g.c.d.(b, m) 1. 

If b with 1 S b < L - 1 is not relatively prime to m, then g.c.d.(b, m) = ps with 0 < 
s < a - , - co + p-1. Since we always have 3 > p, this implies s < a - 1. For 1 < 

N < T, we write 

N-1 N-1 

(35) Z e(bz /m) = e(b'z/m n=O n=O 

where b' = b/ps, m' = p5-s, and g.c.d.(b', m') = 1. According to Lemma 8, the period 
r' modulo m' of the sequence zo Z, . . . is equal to the exponent to which X belongs 
modulo p'-s-W+ P. Since a - s - co + p > (, it follows from Lemma 8 and the re- 
mark preceding Theorem 3 that the conditions of Lemma 9 are satisfied for ml = m'. 
Therefore, 

TI-i 

E e(b Zn/ml) = 0. 
n=o 

Using the division algorithm, we write N = qT' + N' with 0 < N' < r'. Then, 

N-1 N'-1 

E: e(b'zn /m ) = E e(b zn /m ). 
n=O n=O 

Since the conditions of Lemma 10 are also satisfied for m1 = m', we can apply this 
lemma to the last sum. Together with (35), we obtain 

| e(bz /m)| <(m )/\( p t log1 '3 

where ,u' is the exponent to which X belongs modulo m'. From the above descriptions 
of t and t' as exponents to which X belongs, from oa - s - co + p > (3, and from the 
remark preceding Theorem 3, we infer t = pST'. Furthermore, since for h > 1 the ex- 
ponent to which X belongs modulo ph +1 is either equal to or p times the exponent to 
which X belongs modulo ph, we have p S psp'. Therefore, T'/p' S TIp. We can com- 
bine these results with (34) to obtain 

(36) | eN01 /M) < (T 1) (P- 1) log , + 

for 1 S b 6L - 1 and 1 6NS t, 

where ps = g.c.d.(b, m). On the basis of (33) and (36), we proceed now in complete 
analogy with the part of the proof of Theorem 3 starting from (25), and we arrive at 
the desired inequality. 
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If the condition (32) is not satisfied, one can employ the method of [8, The- 
orem 3], in combination with the improvements in the present paper, to obtain a dis- 
crepancy estimate for this case as well, which will, however, be weaker than the esti- 
mate in Theorem 6. This suggests that the parameters of a good congruential random 
number generator should satisfy (32) with N = r. In a special case that is considered 
frequently (see [1]), namely, when m = 2"' with a > 3, X 5 (mod 8), and r odd, 
we have (3 = p = 2, X = 0, r = m, and , = 2`2, and so it is easily checked that (32) 
is valid. In general, for a given prime power m one should choose X, r, and yo in such 
a way that 3 and co are small. Then (32) will be satisfied and, due to p S (3 and Lem- 
ma 8, the factor (r/p))12 in the discrepancy estimate will be close to 1. 

4. Maximal Period Sequences. We discuss now the equidistribution test for a 
class of random number generators suggested by various authors (see [1, Section 7], 
[3, p. 27], [13]). 

Let k > 1 be an integer and let p be a prime. We note that the finite field F k 
of p* elements is an extension field of Fp = Z/pZ, and that the multiplicative group 

p~~~~~~~~~~ F** of F*is cyclic. A polynomial f(x) =xk _ a* lxk-1 aO E Z[x] is 
called a primitive polynomial modulo p if the polynomial f(x) E Fp [xl canonically 
associated with f(x) is the minimal polynomial over Fp of a generator of F*k. With 

p 

such a primitive polynomial modulo p, we can associate the kth order homogeneous 
linear congruential recurrence 

(37) Yn+* akyl+kl + * - - + a0Y (mod p) for n = 0 1, 

Any sequence yo, Y1, - . . of integers in the least residue system modulo p satisfying 

(37) with (vos * *, Yk- 1 ) # (0, .. , 0) is called a maximal period sequence modulo 
p. The reason behind this terminology is the fact that the length of the period of a 
maximal period sequence modulo p is equal to pk _ 1, the largest possible period 
length of any kth order homogeneous linear recurring sequence in Z/pZ. A maximal 
period sequence modulo p is easily seen to be purely periodic. If k = 1 and ao is a 
primitive root modulo p, we get a case that was already discussed in Section 2. 

For a maximal period sequence yo, y1, . . . modulo p, the associated sequence 
xO, x1, . . . of pseudo-random numbers in [0, 11 is given by xn =Yn/IP for n = 0, 1, 
.. . - In practice, p will of course be a large prime. 

Since (yn, Yn+ 1, * * ^ Yn+k- 1), n = 0, 1, . . . , pk - 2, runs through all 
k-tuples * (0, . . . , 0) of elements in the least residue system modulo p, it follows 
that in a full period of yO, y1, . . . each integer q, 1 < q < p - 1, occurs exactly 

pk- 1 times and O occurs exactly pk- 1 - 1 times. Therefore, a full period of xo, 
xl, . . . has an extremely even distribution in [0, 1]. The following result shows that 
sufficiently long segments of a full period of xo, xl, . . . also perform well under the 
equidistribution test. 

THEOREM 7. For a prime p and k > 1, let yO, y 1, . . . be a maximal period se- 
quence modulo p satisfying (37). 7hen, for 1 < N S pk _ 1, the discrepancy DN of 
the associated pseudo-random numbers xo, xl,. .. , XN- 1 satisfies the inequality 
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2 k_2 2_o__+2 og 38 DN < 
N 

+ 
7 log(pk 

_ 1) + 2 
-)( o + 1 ( 2 p N\7r5/7r5,pk1\7 5, 

Proof. We set r = p- 1. For g.c.d.(b, p) = 1 and any integer c, we have 

T-1k2 
1? e(byn/p)e(cn/r) S pk/2 

by [10, Theorem 1] (compare also with [10, Theorem 4] ), since, in the notation of 
these theorems, we have r = ,u for a maximal period sequence modulo p. For c = 0, 
we can obtain a sharper estimate by using the information concerning the number of 
occurrences of elements in the full period of YO, Y1, .... This yields immediately 

nO e(byn/p) =-1. Using these facts and the method in Lemma 3, we get for 1S 
N < r and g.c.d.(b, p) = 1, 

N-1 1 r N-1 i-1i 

| ? e(bY/p)|6 ?|E e(-cy/r,)| e (by np)e(cn/T)| 
(39) n=O c= 1 y=0 n=O 

6- 
N 

k2r,,|?e-1 c/) N < k/2(2 log,r+5 

The inequality (38) follows now from Lemma 4. 
An alternative discrepancy estimate can, of course, be obtained on the basis of 

(7) and (39). However, the inequality (38) is, in general, better than what could be 
achieved by this method. If N is somewhat larger than pk/2, say N > p(k+ 3)/2, then 
2/p becomes the main term in (38), and this cannot be improved upon by the alterna- 
tive method. Only under special circumstances, e.g., if k is small and N is very close 
to pk/2, we get a slightly better result. The proof proceeds in complete analogy with 
earlier proofs involving this method. 

We establish now a discrepancy estimate for pseudo-random numbers based on 
an arbitrary linear congruential generator. Let p be a prime, and let yo, y1, . . . be a 

sequence of integers in the least residue system modulo p satisfying the kth order linear 
congruential recurrence 

Yn+k ak*lyn+kl1 + * +aoyn + a (mod p) for n = 0, 1, . . . 

where a, ao, . ., - 1 are integers with ao not divisible by p. There is no condition 
on the initial values yO . . . , Yk- 1 . The sequence yO, Y1, . . . is purely periodic 

(see [11] for a general result to this effect); let r be its period. We also associate with 
the sequence a number , defined as follows (compare with [10, Lemma 31). Let b0, 
bl, . . . be the sequence of integers in the least residue system modulo p determined 
by bo = b= * bk2 = 0, bk 1= 1 (bo = I if k = 1) and 

(40) 'bn+k =ak-lbn+k-l+ +aobn (modp) forn=0 1 . 

Then , is taken to be the period of bo, bl, ... . The number , may also be de- 
scribed as the maximal period of any sequence in the least residue system modulo p 



592 HARALD NIEDERREITER 

satisfying the homogeneous linear congruential recurrence (40) (see [10, Lemma 21). 
If yo, y1, . . . is the sequence introduced above, let xo = yo/p, xl = Y1 /P, .. 

be the associated sequence of pseudo-random numbers in [0, 1]. 
THEOREM 8. Let xo0 xl, . . . be the sequence of pseudo-random numbers asso- 

ciated with the kth order linear recurring sequence yO, y1, . . . modulo the prime p. 

Let r and ,u be the numbers described above. Then, for 1 S N < r, the discrepancy 
DN of the points xo, xl, P.. P XN l satisfies the inequality 

DN <- + N (,r/,)l/( log T + 5+-)( log p +5) N P N (ir 5lor 

Proof. For g.c.d.(b, p) = 1 and any integer c, we have 

I;e(by lp)e(cnlr) pkl2(,TIP)112 
n0 n=O 

according to [10, Theorem 11 (compare also with [10, Theorem 4]). Then, for 1 I 
N S r and g.c.d.(b, p) = 1, we get by the method of Lemma 3, 

e N-1 1 T N-1 r-1 

e(by - e(- cyir) E e(by Ip)ecn/r) 
n= c=1 y0o n=0 

< 1 
k/2(/,)1/2( 

'r-1 N -1 f N 

< P*l(l)l (2lo + 2 + N) 
T \c1~7 yO / 

The desired inequality follows now from Lemma 4. 

The remarks following Theorem 7 are, mutatis mutandis, also applicable in the 
present situation. Theorem 8 suggests that those sequences y0, Y1, . . . with a period 

considerably larger than pk/2 seem to be useful as random number generators. This 
condition is, of course, satisfied for maximal period sequences modulo p. 

5. Lower Bounds. In this section, we shall discuss the effectiveness of the dis- 
crepancy estimates established in this paper. It will turn out that the estimates are 
best possible apart from logarithmic factors. The results of this section are based on the 
following lemma. 

LEMMA 11. For any points to. .., tN-1 in [0, 1) with discrepancy DN, we 
have 

N-1 

jE e(tnj < 4NDN. 
n=O 

Proof. See [4, Chapter 2, Corollary 5.1]. 

The following theorem should be compared with the results in Theorem 1 and 4. 
THEOREM 9. Let m be a prime, let r be an integer, and let X with g.c.d.(X, m) = 1 
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belong to an exponent ,u modulo m with , > (m - 1)/2 (e.g., X a primitive root 

modulo m). Then there exists a sequence yo, y1, . .. in the least residue system mod- 

ulo m with g.c.d.(yo, m) = 1 and Yn + 1 Xyn + r (mod m) for n = 0, 1,... such that 

the associated sequence xo, xl, . . . of pseudo-random numbers in [0, 1] satisfies 

(41) DN(XO . XN- 1) > mI12/8N 

for some integer N with 1 < N < ,u. 

Proof. The case m = 2 being trivial, we assume that m is an odd prime, and we 
set N = (m - 1)/2. Then, with empty sums being interpreted as zero, 

m-1 N-1 2 
S = ? e((bXe + (Xn-i + xn-2 +* + 1)r)Im) 

b=1 l n=O 

m-1 N-1 

- E E e(b(X'h- Xi)/m) 
b=1 h,j=0 

* e((Xthi + )h2+ 
- 

+ 1-AX--X-2 _ * *- -1)r/m) 

N-1 
Z e((X^hi- + Xh-2 + + 1 X-1 - 

Xi-2 _ 1)r/m) 
h,j=0 

*nEie(b(Xh- X)/m). 
b=i 

The inner sum is m - 1 for h =1; for h #1, we have Xh - Xi (mod m), and so, 
the inner sum is - 1. Therefore, 

2 
N-1 

- , e((Vhi- + vh -2 + * * * + 1-_ Xi-i _- j-2 - 2 1)rlm). 
h,j=O;h *j 

The sum occurring here is real and contains N(N - 1) terms. Therefore, 

S (m-1)2 (m -1)(m-3) m2 - 1 > 2 4 4 

Recalling the definition of S, it follows that there exists an integer bo, 1 < bo < m - 

1, with 

N-1 ~~~2 m+1I m (42) | e((b e + (e -X 1 + An2 + * * * + 1)r)/m) | > - 

Now let yo, Yi, . .. be the sequence in the least residue system modulo m determined 

by yo = bo and Yn + 1iXyn + r (mod m) for n =0, 1 ... . Then one shows by 
induction that Yn bo0Xn + (ni- + xn2 + * + I)r (mod m) for n = 0, 1, ... 

and so (41) follows from (42) and Lemma 11. 
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We note that the number ,u in Theorem 9 is also the period of x0, xl,... if 
X t 1 (mod m) (which holds for m > 5) and (X - I)yo + r t 0 (mod m). The fol- 
lowing theorem should be compared with the results in Theorem 3 and 6. 

THEOREM 10. Let m = pa, p prime, a > 2; let r be an integer; and let X with 
g.c.d.(X, m) = 1 belong to the largest possible exponent A modulo m (i.e., A = p(m) if 
p is odd or m = 4, and p = 2`-2 if m = 2' with a > 3). Then there exists a sequence 
YO, Y1, . . in the least residue system modulo m with g.c.d.(yo, m) = 1 and Yn+ 1- 

Xyn + r (mod m) for n = 0, 1, .. . such that, for some integer N with 1 < N <, 
the associated pseudo-random numbers xo, . . ., XN- 1 in [0, 1] satisfy 

(43) D (x_xv)> - 1)i12m12 if p is odd N(XO N- 1) > 
8pN 

and 

(44) DN(XO . XN-d> 8V1N if p = 2. 

Proof. For m = 4 and m = 8, this is shown by choosing N = 1. Thus, we may 
assume that p is odd or that m = 2a with a > 4. We set N = qp/p, where q = 1 if 
p = 2 and q = (p - 1)/2 if p is odd. We use asterisks to denote summations restricted 
to be over integers relatively prime to m. Then, with empty sums being interpreted as 
zero, 

m-1 N-1 2 

b- E* nE e(bi +(t + Xi- + **+ 1)r)/mj S ~ e((b + X'(e- b=O n=O 

m-1 N-1 

-= * E e(b(Xh - Xi)/m) 
b=O h,j=O 

.e((Xh-' + Xh-2 + + 1 Xi-1 Xi-2 - 1)r/m) 

= N-1 
+ + . . 

1 
+ 1 _ j-2 - l)r/m) 

h,j=O 

m-1 
?* e(b(X" - X')/m) 
b=O 

N-1 
N(m) + ?i e((Xh- + Xh-2 + . 

I 
+ 1 - i - _ 2 ... - 1)r/m) 

h,j-O0 
h,j 

m-i 

E*e(b(X 
- X'i)/m) 

b-O 

N-1 m-1 
> Np(m)- ENi * e(b(Xh -')/m) 

hJ=0 b=O 

The inner sum in the last expression is a Ramanujan sum with Xh - X 0 (mod m). 
By the formula for Ramanujan sums mentioned in the proof of Lemma 5, only those 
sums with Xh = Xi (mod pi) will be nonzero, the value being - m/p in this case. 
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Since X belongs to the exponent ,u/p modulo p'-l1, the congruence Xh Xi (mod p'-) 

is equivalent to h (mod(,u/p)). It follows that 

(45) S > Nep(m) - 2mT/p, 

where T is the number of ordered pairs (h, j) with 0 6 h < j N - 1 and h j 
(mod(,/p)). For each s, 1 s < q - 1, we have j - h = s,/p for the ordered pairs 
(0, s,u/p), (1, s,u/p + 1), . . ., (N - 1 - s,u/p, N - 1). Therefore, 

T= E (N --) = 11 , (q - s) = 11 * q(q- ) 

Together with (45), we get 

(46) s > (qp(m) - m q(q -1)) 

Now let p = 2. Then S > <p(m)ji/2, and the definition of S implies that there exists a 
bo in the least residue system modulo m with g.c.d.(bo, m) = 1 and 

(47) 
N e((bXn + (X-1 + Xn-2 +** + 1)r)/m) 2 = 

0 2 8 
n=0 

Now let yo, y1, . . . be the sequence in the least residue system modulo m determined 
by yo = bo and Yn+ 1E Xyn + r (mod m) for n = 0, 1, . . Then one shows by 
induction that yn--boXe + (n-1 + ? -2 + - - - + I)r (mod m) for n = 0, 1, .... 
and so (44) follows from (47) and Lemma 11. 

If p is odd, we use q = (p - 1)/2 and , = ep(m) to deduce from (46) that 

S >1 
I 

t(m) - mp- 1)p- 3) 

m12 
=p(m) m (2(p - 1)2 -(p- 1)(p -3)) 

4p 

-(M)(pi2- 1)m/4p2. 

By the definition of S, there exists a bo in the least residue system modulo m with 
g.c.d.(bO, m) = 1 and 

N-1 n- (p2 _1)M 
en ?( + (e -I + Xn 

2 + * * + 1)r)/m) > 

The proof is now completed in the same way as in the case p = 2. 
If p is odd, then for the number X from Theorem 10 we have p = 0 in Lemma 8, 

so that according to this lemma the number , from Theorem 10 is equal to the period 
of x0, xl, . . . if and only if (X - l)yo + r is not divisible by p. If p = 2, then p = I 
or 2, and according to Lemma 8 the number N = ,u/2 used in the proof of Theorem 10 
for m > 16 is less than or equal to the period of xo, xl, . . . if and only ifco S p + 1, 
where co is the largest integer with 2' 1((X - I)y0 + r). 
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If one drops the condition g.c.d.(yo, m) = 1 in Theorems 9 and 10, one gets anal- 
ogous results by going through exactly the same method (which, in fact, becomes 
simpler if no restriction on yo is imposed). The resulting statements are, however, only 
of interest in the inhomogeneous case. Obviously, the method in the proof of The- 
orems 9 and 10 yields also results for any prescribed value of N with 1 < N < u. 

Finally, we shall discuss the inequality (38) in Theorem 7. Since xo, xl, ... 
xN 1 are rationals with denominator p, we clearly must have DN > I/p (this remark 
applies also to Theorem 8), which shows that the main term 2/p in (38) is correct up 
to a constant. Furthermore, we have shown in [10, Theorem 5] that for every primi- 
tive polynomial modulo p of degree k there exists a corresponding maximal period 
sequence yo, y1, . . . modulo p and an integer N with 1 < N < pk - 1 such that 

f2i~1eynp1 > k/2 |Ee(Yn/P)| > 2 PI 

It follows then from Lemma 11 that for the associated pseudo-random numbers xo, x1, 

XN-1 we have 

DN > p/8N. 

This shows that for small values of k the second term on the right-hand side of (38) 
is needed, at least up to logarithmic factors. 

Added in Proof. The techniques in this paper can be extended to obtain results on 
the statistical independence of successive terms of sequences of linear congruential pseudo- 
random numbers. This is carried out in the author's paper "Pseudo-random numbers and 
optimal coefficients" to appear in Advances in Math. 
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